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Abstract Polychaete worms are hosts to a wide range of ma-
rine parasites; yet, studies on trematodes using these ecologi-
cally important species as intermediate hosts are lacking.
During examination of the spionid polychaete Marenzelleria
viridis collected on the north shore of Long Island, New
York, putative trematode cysts were discovered in the body
cavity of these polychaetes. In order to verify these cysts as
metacercariae of trematodes, specimens of the easternmudsnail
Ilyanassa obsoleta (a very common first intermediate host of
trematodes in the region) were collected for molecular compar-
ison. DNA barcoding using cytochrome C oxidase I regions
confirmed the presence of three species of trematodes
(Himasthla quissetensis, Lepocreadium setiferoides, and
Zoogonus lasius) in both M. viridis and I. obsoleta hosts.
Brown bodies were also recovered from polychaetes, and mo-
lecular testing confirmed the presence of L. setiferoides and
Z. lasius, indicating an immune response of the polychaete
leading to encapsulation of the cysts. From the 125 specimens
ofM. viridis collected in 2014, 95 (76.8 %) were infected with
trematodes; of these 95 infected polychaetes, 86 (90.5 %)
contained brown bodies. This is the first confirmation that trem-
atodes useM. viridis as a second intermediate host and that this
intermediate host demonstrates a clear immune response to

metacercarial infection. Future research should explore the role
of these polychaetes in trematode life cycles, the effectiveness
of the immune response, and transmission pathways to verte-
brate definitive hosts.

Keywords Digenean . DNAbarcoding . Ilyanassa obsoleta .

Marine . Northwest Atlantic . Parasite

Introduction

Polychaete worms are ecologically important members of
many benthic marine habitats that form critical links in food
webs (Cosson et al. 1997; Marcogliese 2002). In addition,
they can be important hosts for a range of marine parasites
(Margolis 1971, 1973). Polychaetes have been documented as
second intermediate hosts in the life cycles of a variety of
trematode species (Peoples 2013); however, compared to the
rich literature on other host groups, research on trematode/
polychaete interactions and host specificity is lacking (but
see Peoples and Poulin 2011; Peoples et al. 2012).
Trematodes infect polychaete worms after being released from
their first intermediate hosts (typically gastropod molluscs).
Within gastropod hosts, trematodes replace host tissue (espe-
cially in the gonad region, resulting in castration) and may
occupy a significant portion of the shell volume (Leung
et al. 2009a). After developing as sporocysts and/or rediae
and multiplying asexually, they emerge from the first interme-
diate host as free-swimming cercariae and seek a second in-
termediate host, which may be polychaetes or other inverte-
brate or vertebrate taxa. Within second intermediate hosts,
they encyst as metacercariae until they are ingested by a de-
finitive host (some trematodes lack a second intermediate host
and form metacercarial cysts on substrates, or emerging cer-
cariae can directly penetrate definitive hosts). Once in the
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definitive host, trematodes complete their life cycle by repro-
ducing sexually and releasing eggs through the host’s feces
(Cribb 2005). Trematodes typically do not kill their hosts but
can affect their behavior, overall fitness, and, scaled up to the
community level, the structure of coastal systems (e.g.,
Mouritsen and Poulin 2005; Wood et al. 2007; Kuris et al.
2008).

Although some trematodes exhibit an abbreviated life cycle
and reach sexual maturity within a single molluscan host
(Poulin and Cribb 2002), most have a complex life cycle
consisting of at least two hosts. They parasitize a diverse range
of invertebrates (arthropods, molluscs, and annelids) and ver-
tebrates across many ecosystems (Smith et al. 2007). Avariety
of vertebrates (e.g., fish, birds, and mammals) serve as defin-
itive hosts for trematode species. Although trematodes exhibit
an amazing diversity of life cycles, one nearly consistent char-
acteristic of them all is the use of molluscs as a first interme-
diate host (Esch et al. 2002). Polychaete worms represent the
only other non-molluscan group documented to act as a first
intermediate host to trematodes (see Køie 1982 and references
therein). The trematode family Sanguinicolidae is the only
digenean family known to infect non-molluscan first interme-
diate hosts such as marine polychaetes (Cribb et al. 2001).

Within the Polychaeta, 18 families are known to act as
second intermediate hosts for trematodes (Peoples 2013);
however, limited sampling of polychaetes for trematode infec-
tion suggests that there may be many undocumented potential
hosts (Peoples et al. 2012). Within the family Spionidae, only
five species, Polydora ciliata (Johnston, 1838), Polydora
cornuta (=ligni) Bosc, 1802, Pygospio elegans Claparède,
1863, Spio sp., and Streblospio benedicti Webster, 1879
(McCurdy et al. 2000; Peoples 2013), have been shown to
host trematodes. All of these species are host to the trematode
Lepocreadium setiferoides (Miller &Northup, 1926), which is
native to the North Atlantic and uses the eastern mudsnail
Ilyanassa obsoleta (Say, 1822) as its first host and fish such
as the flounder Pseudopleuronectes americanus (Walbaum,
1792) as its definitive host (Stunkard 1972). At least nine
other polychaetes along the east coast of the USA are second
intermediate hosts for trematodes after release of cercariae
from I. obsoleta (Curtis 1997, 2009; Blakeslee et al., 2012)
(Table 1). The present work reports on new records of trema-
todes in the spionid polychaete Marenzelleria viridis (Verrill,
1873) collected on the north shore of Long Island, New York.

The species of focus, M. viridis, is an infaunal polychaete
that burrows in sandy substrates of brackish to estuarine waters
along the east coast of North America from Nova Scotia to
Georgia but has also been introduced to the Baltic Sea, North
Sea, and Danish Waters (e.g., Maciolek 1984; Zettler 1997a,
1997b; Zander and Reimer 2002; Sikorski and Bick 2004;
Blank et al. 2008; Delefosse et al. 2012). M. viridis is a
deposit-feeding polychaete (Miller et al. 1992) that can reach
high densities and have important ecological impacts,

particularly in reducing other infaunal macroinvertebrates, pos-
sibly through competition for food and space (Delefosse et al.
2012). M. viridis also contributes greatly to the ecology of
benthic communities by accelerating nitrogen remineralization,
biodeposition processes, bioturbation, and ventilation in the
sediment (Kotta et al. 2001; Quintana et al. 2011; Renz and
Forster 2013; Jovanovic et al. 2014).

While studyingM. viridis on the coast of Long Island, New
York, preliminary investigations discovered clear to light
green cysts resembling those of trematodes inside the poly-
chaetes. Also observed were brown, opaque cyst-like struc-
tures.We hypothesized that these structures could represent an
immune response of the annelids caused by the encapsulation
of foreign objects too large to be phagocytized (Sima 1994).
Although best studied in oligochaetes, cellular immunity has
also been found in several polychaetes that are known to en-
capsulate living and non-living material (Cuvillier-Hot et al.
2014). This encapsulation forms a granuloma, producing
Bbrown bodies^ or Bgranulomata^ (Dales 1983; Porchet-
Henneré et al. 1987, 1990; Porchet-Henneré and M’Berri
1987; Porchet-Henneré and Vernet 1992; Valembois et al.
1992, 1994; Beschin et al. 1999; Dhainaut and Scaps 2001;
Reinhart and Dollahon 2003; Field et al. 2004; Procházková
et al. 2006; Cuvillier-Hot et al. 2014). While metacercariae
have been documented in a wide range of polychaetes, encap-
sulation and brown body formation have not been studied in
detail and few records exist from polychaetes collected in the
field (Shaw 1933). Polychaetes, particularly tube-dwelling
species, are often infected by trematodes in anterior segments,
most likely due to the branchial currents bringing cercariae
into contact with this region first (Shaw 1933; Stunkard
1938; Brown and Prezant 1986; Rangel and Santos 2009;
Peoples and Poulin 2011).

The purpose of this research was to investigate the
cysts and brown bodies found in M. viridis. Specifically,
we used DNA barcoding (as previously completed for
flatworms: Vilas et al. 2005; Leung et al. 2009a, 2009b;
Moszczynska et al. 2009; Sanna et al. 2009) and light
microscopy to determine which species of trematode
metacercariae were present in the polychaetes. We
suspected that the first intermediate host for the trema-
todes infecting M. viridis could be the abundant eastern
mudsnail (I. obsoleta), a common host to several trema-
tode species in the region. Thus, DNA barcoding was also
performed on trematode species identified in the snail and
then compared to the DNA from the polychaetes. Finally,
the prevalence and distribution of metacercarial cysts and
brown bodies within specimens of M. viridis were quan-
tified. Altogether, our work describing this previously un-
documented host-parasite relationship can help inform fu-
ture ecological studies in the region, as well as potential
impacts on the bird and fish predators that act as defini-
tive hosts for the trematodes.
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Materials and methods

Sample collection and storage

M. viridis polychaetes and I. obsoletamudsnails were collect-
ed from Hempstead Harbor located in Sea Cliff, New York
(40° 50′ 27.33″ N, 73° 39′ 11.65″ W) from May 2013 to
July 2014. Polychaetes (n=33 in 2013, n=125 in 2014) were
collected with a shovel and sieve (0.5 mm mesh size) and
placed in buckets containing unfiltered seawater. The 2013
collection of polychaetes was non-random; we specifically
isolated polychaetes that appeared to contain cysts in order
to document the presence of trematodes and refine amplifica-
tion and sequencing protocols necessary for that work. The
2014 polychaetes were collected randomly to assess preva-
lence and incidence of trematode infection. Mudsnails (n=
274 in 2013; n=100 in 2014) were collected haphazardly by
hand at the same locality. After transport to the lab, mudsnails
were stored in a refrigerator at ~14 °C with aeration until time
of dissection and analysis. Specimens of M. viridis were dis-
sected within 24 h of collection.

Sample dissection

Shells of live I. obsoleta were cracked, and confirmation of
trematodes was made by the presence of cercariae and
sporocysts and/or rediae in the tissue dissected from the diges-
tive and/or reproductive glands using a compound light mi-
croscope. Larval trematodes were identified based on
McDermott (1951) (see Table 1 herein). Samples of the para-
sites were stored in 70 % ethanol for later molecular work.

In order to immobilize M. viridis for dissection, the poly-
chaetes were submerged in 3 % MgCl2 (~50:50 mixture of
7%MgCl2 and seawater) and placed in the freezer for approx-
imately 20 min. Specimens of M. viridis often had sand and
organic particles in the posterior end of their digestive tract,
making it difficult to observe/confirm cysts in this region; for
this reason, only the anterior segments (~30–60 segments)
were analyzed. After cutting off the posterior end, the anterior
end of the polychaete was squashed between two microscope
slides and observed under an Olympus SZX12 stereomicro-
scope and Olympus CX31 compound microscope. The total
number of segments of these anterior ends, their length (in
mm), and total number of cysts and brown bodies found
throughout the region were quantified. The first (anterior-
most) segment containing cysts or brown bodies was record-
ed; when polychaetes had cysts or brown bodies in >1 seg-
ment, the last (posterior-most) segment infected was also
recorded.

When small ovoid clear or brown cysts were observed
during analysis, the individual cyst or a small section of the
polychaete was cut out with a micro-scalpel and preserved in
70% ethanol for molecular testing. In order to provide enough

template material for molecular studies, in some instances,
more than one cyst and/or brown body per polychaete were
preserved and analyzed together. During the observation of
polychaete samples, the presence of both clear to light green
cysts and brown opaque cysts, or brown bodies, were record-
ed. Pictures of each type of cyst were taken with an Olympus
CX31 with Olympus DP11 camera; ImageJ was used to make
length and width measurements from these images.

Molecular analyses

In order to excise the parasite tissue from polychaete samples,
mechanical homogenization was required before DNA extrac-
tion. Fifty microliters of 5–10% Chelex®-100 (Bio-Rad) slur-
ry and approximately 40–50 mg of 0.5-mm BioSpec glass
beads were added to the samples. Samples were vortexed for
approximately 10 min. Afterwards, a simple Chelex® extrac-
tion protocol was followed (Walsh et al. 1991).

Because DNA extracted by Chelex did not always result in
PCR amplicons in preliminary samples, a MOBIO
Laboratories, Inc. Ultraclean™ PCRClean-up™Kit was used
before performing PCR in an attempt to remove additional
PCR inhibitors following the manufacturer’s protocol.
Approximately 50 μL of Chelex-purified sample was proc-
essed. A final volume of approximately 50 μL was obtained
using the elution buffer (10 mM Tris).

To determine which trematode species were present in the
collected samples, multiple primers amplifying either the 18S
or cytochrome c oxidase I (COI) barcoding regions were used
(Supplemental Table 1). All primers were ordered from
Invitrogen. B18S1^ and B18S2^ are universal 18S primers
designed for metazoan species (Machida and Knowlton
2012). The BHq_COIF^/BHq_COIR,^ BLs_COIF^/
BLsCOIR,^ and BZl_F^/BZl_R^ primers are forward and re-
verse primers specific to the cytochrome C oxidase I region in
the trematode species Himasthla quissetensis (Hq),
L. setiferoides (Ls), and Zoogonus lasius (Zl; note that
previous records of this species from the east coast of the
USA as Zoogonus rubellus are actually Z. lasius; see
Table 1), respectively (Blakeslee and Fowler 2012). Each
PCR reaction consisted of a total volume of 30 μL and
contained a final concentration of 100 μM of both forward
and reverse primers along with 1× OneTaq Master Mix (New
England Biolabs) containing 0.2 mM dNTPs, 20 mM Tris
HCl, 22 mM KCl, 22 mM NH4HCl, and 1.8 mM MgCl2,
approximately 300 ng of template DNA. Using the 18S1/
18S2 and Hq_COIF/Hq_COIR primers, the degenerate 18S
and H. quissetensis cytochrome oxidase fragments were am-
plified using a program which consisted of denaturing at
95 °C for 1 min, followed by 45 cycles of denaturing at
94 °C for 20 s, annealing at 50 °C for 20 s, and extending at
68 °C for 2 min with a final extension at 68 °C for 10min. The
Ls_COIF/Ls_COIR and Zl_F/Zl_R primers were used to
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amplify the L. setiferoides cytochrome oxidase fragment using
a program which consisted of 96 °C for 1 min, followed by
45 cycles of 94 °C for 20 s, 52 °C for 30 s, 72 °C for 1 min,
and a final DNA extension at 72 °C for 10 min.

For select samples that did not amplify with any COI-
specific primers and amplified mostly or all host DNA using
the 18S1/18S2 primers, the Bworm A^ and Bworm B^ 18S
primers were used. These primers flank variable domains 1–6
of the 18S ribosomal DNA (Machida and Knowlton 2012), a
smaller region than the entire small subunit amplified by the
18S1/18S2 primer pair. They were amplified under the same
conditions as the Hq_COIF/Hq_COIR and 18S/18S2 primers.
If host DNA was detected in the 18S sequences using the
worm A and worm B primers, this primer set served as a
shorter sequencing alternative to try to obtain parasitic-
specific DNA.

Samples were sent out for Sanger sequencing to Macrogen
Corporation (Rockville, MD, USA). In order to compare se-
quences, a contiguous sequence of the forward and reverse
amplified DNA for each sample was made using BioEdit’s
CAP contig assembly program using a minimum base overlap
of 20 bases and an 85 % match minimum. The ClustalW
multiple nucleotide sequence alignment tool was used to align
these sequences (Li 2003). Both the distance-based neighbor-
joining and character-based maximum likelihood analysis al-
gorithms were used for phylogenetic estimation (Hall 2011).
Sequences of H. quissetensis, L. setiferoides, and Z. lasius
were used as in-groups for these estimations while a reference
sequence for the liver fluke Fasciola hepatica (Linnaeus,
1758) was used as an out-group. For each analysis, the best
evolutionary model was chosen in MEGA after the data was
grouped by gene, either 18S or COI. The genetic pairwise
distance, using the simultaneous estimation method in
MEGA 6, within each species was calculated (Tamura et al.
2004). A bootstrap method of 2000 replicates with the maxi-
mum composite likelihood methods were used for these cal-
culations (Efron 1982). COI sequences for three specimens of
H. quissetensis (two samples from I. obsoleta and one sample
fromM. viridis), L. setiferoides (one sample from I. obsoleta),
and Z. lasius (four samples from M. viridis), as well as 18S
sequences for H. quissetensis previously analyzed by
Blakeslee (unpub.) from infected I. obsoleta, were used for
comparison with our cyst samples from the polychaetes.
Consensus COI and 18S sequences for the trematode species
are shown in Supplemental Figs. 1 and 2, respectively.

Results

M. viridis dissected during this study were found with
encysted metacercariae (Fig. 1a, b) and/or brown bodies
(Fig. 1c, d) that contained trematode DNA. Though difficult
to distinguish based on light microscopy unless cysts are

removed from hosts, the metacercariae of each species have
characteristic traits that distinguish them. Metacercariae of
H. quissetensis have a collar of small spines surrounding the
anterior end (Fig. 1e), whereas Z. lasius metacercariae have a
single stylet positioned in the center of the oral sucker
(Fig. 1f). Free-swimming trematode cercariae released from
the first intermediate host also have species-specific traits
(Table 1). The cercariae of H. quissetensis are released from
sporocysts and lack eyespots and have an unforked tail and a
spinous cuticle. The cercariae of L. setiferoides are released
from rediae and have eyespots and a setose tail. The cercariae
of Z. lasius are released from sporocysts and lack eyespots and
a tail.

Among the 33 polychaete samples found with cysts in
2013, 17 contained clear cysts, nine contained isolated brown
body cysts, and seven contained a mixture of both clear and
brown cysts. Fourteen of these samples were successfully se-
quenced: One was confirmed to contain only H. quissetensis,
11 contained only Z. lasius, and two samples contained both
H. quissetensis and Z. lasius. No polychaete samples collected
in 2013 tested positive for L. setiferoides. The remaining 19
samples did not amplify with any available primers, which
may be because of DNA degradation, too little template ma-
terial, or because the cysts represent other trematode species
we did not have primers for. Of the 14 samples that amplified,
four were from isolated brown body cysts, confirming that
they contain trematode parasite DNA.

In 2013, 274 mudsnails were analyzed and 13 (4.7 %) were
parasitized by trematodes. Based on light microscopy exami-
nation of the cercariae, these were provisionally identified as
Diplostomum nassa (one specimen), H. quissetensis (three
specimens), L. setiferoides (two specimens), Stephanostomum
tenue (five specimens), and Z. lasius (two specimens). In sub-
sequent molecular analyses, four of these samples were omitted
because they were sequenced before the universal 18S1/18S2
primers for H. quissetensis, L. setiferoides, and Z. lasius were
available. Of the nine samples with positive PCR amplification,
four were confirmed (three as H. quissetensis and one as
L. setiferoides), four (one L. setiferoides and three Z. lasius)
did not match the morphological identification, suggesting the
possibility of co-infection, and one sample did not amplify.

In 2014, 95 (76.8 %) of the 125 M. viridis dissected were
found to be parasitized based on light microscopy. Of the 95
infected polychaetes, 35 (36.8 %) contained cysts and brown
bodies, whereas 10 (10.5 %) contained cysts only and 50
(52.6 %) contained brown bodies only. The cysts and brown
bodies overlapped in distribution within the polychaetes: they
were found from segments 1 to 50 and 2 to 53, respectively
(Table 2). There was no significant difference in the first and
last segments of the cysts and brown bodies withinM. viridis
(first segment t130=0.94, P=0.35; last segment t82=1.23, P=
0.22). There were significantly more brown bodies than clear
cysts identified within specimens of M. viridis across all our
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samples (t106=−9.1, P<0.001). On average, cysts (n=47)
were 0.16±0.06 mm long and 0.18±0.06 mm wide whereas
brown bodies (n=54) were 0.12±0.03 mm long and 0.14±

0.11 mmwide. The cysts were significantly larger than brown
bodies in both length (t68=4.31, P<0.001) and width
(t82=2.25, P=0.027).

Fig. 1 Trematode metacercarial
cysts and brown bodies from
Marenzellaria viridis. a Clear
ovoid metacercarial cyst,
indicated by arrowhead. b
Metacercarial cyst. c Brown body
found within polychaete. d
Brown body dissected from body
of polychaete; arrowhead shows
metacercarial cyst. e
Metacercarial cyst of Himasthla
quissetensis (confirmed with
molecular data). Arrowheads
show characteristic spines in
metacercaria of this species. f
Metacercarial cyst containing
Zoogonus lasius (confirmed with
molecular data). Arrowhead
shows the characteristic stylet in
metacercaria of this species. Scale
bars=0.1 mm

Table 2 The average length and number of segments of the anterior
ends of Marenzellaria viridis dissected and examined for trematode
metacercaria. Number of cysts and brown bodies in each worm and the

range of segments they were found in are reported. Mean ± standard
deviations are presented; sample size is 125 for all measures

Cyst presence Brown body presence

No. of segments Length No. of cysts First seg mean Last seg mean No. of cysts First seg mean Last seg mean

44.73±6.77 15.39±2.66 0.5±0.75 20.18±12.87 31.36±13.30 2.72±3.04 17.97±12.81 34.99±9.32
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Of the 77 cysts and/or brown body samples tested with
PCR, 46 samples had positive primer species-specific results,
35 with Z. lasius COI-specific primers, and 6 with the
L. setiferoides COI-specific primers. Five samples positively
amplified with both sets of primers. There were no positive
identifications of H. quissetensis DNA in these samples.
Although we did not have positive amplification in poly-
chaetes, H. quissetensis was present snails (see below).

Overall, nine (9 %) of the gastropod samples from 2014
were infected with trematodes. Based on light microscopy
examination of the cercariae, these were provisionally identi-
fied as H. quissetensis (one specimen), L. setiferoides (three
specimens), S. tenue (one specimen), Z. lasius (two speci-
mens), and unidentified (two specimens). Molecular data con-
firmed four of these as trematodes (two H. quissetensis and
two Z. lasius) and confirmed one of the unidentified trema-
todes as Z. lasius. Positive PCR amplicons suggested the pos-
sibility of co-infection in two samples and did not support the
morphological identification of one of the L. setiferoides sam-
ples. One sample did not amplify.

Phylogenetic trees were constructed using both the
neighbor-joining and maximum likelihood methods with the
COI and 18S sequences (Fig. 2). COI data produced mono-
phyletic groupings of H. quissetensis and Z. lasius, whereas
three samples of L. setiferoides were monophyletic and a
fourth sample came out as basal to all in-group taxa
(Fig. 2a, b). In the 18S analysis, a monophyletic grouping of
H. quissetensis was also found. However, L. setiferoides
grouped with Z. lasius, likely due to the fact that there was
no L. setiferoides 18S sequence for reference (Fig. 2c, d).

Discussion

This study provides the first confirmation of the polychaete
M. viridis acting as a second intermediate host for any trema-
tode species. A high prevalence of metacercarial cysts was
found in M. viridis (~77 % of polychaetes in 2014), similar
to a study by McCurdy et al. (2000), which found high prev-
alence of trematodes in the spionids P. elegans (75 %) and
S. benedicti (50 %). In total, molecular data confirmed three
species of trematodes (H. quissetensis, L. setiferoides, and
Z. lasius) from metacercariae in the polychaetes, all of which
utilize I. obsoleta as their first intermediate host. Thus, it ap-
pears as if exposure to infected I. obsoleta from the same, or a
nearby site, can result in high levels of infection in specimens
ofM. viridis. Even so, it remains unclear whether these trem-
atodes would then be trophically transmitted from the poly-
chaetes to suitable definitive hosts. For example, one of the
trematode species (H. quissetensis) found infecting M. viridis
use birds (seagulls and others) as definitive hosts (Table 1), but
these types of birds have not been documented to feed on
M. viridis. However, these birds do feed on infaunal

invertebrates, like other species of polychaetes (Ambrose
1986; Heard 1982; Leopold and van Damme 2003), so it
remains possible that trophic transmission could be occurring
for this trematode species. In contrast, both L. setiferoides and
Z. lasius use fish as their definitive hosts (Table 1), and both
have also been documented to infect other polychaete species.
M. viridis has been found in the guts of fish (Essink and Kleef
1991; Winkler and Debus 1996; Derrick and Kennedy 1997;
Sardá et al. 1998) and thus may be an appropriate intermediate
host for these trematodes. Detailed examination of these po-
tential definitive hosts is required to determine whether tro-
phic transmission is successfully occurring or if M. viridis
instead represents a sink for these trematode species, acting
as a low competency host or part of a Bdilution effect^
preventing transmission (Johnson and Thieltges 2010;
Koppel et al. 2011).

Another noteworthy result of our work is that we determined
the brown bodies detected in M. viridis contain trematode
DNA, confirming that they are encapsulated cysts. Thus, ours
is the first study to reveal an immune response in this polychaete
as a result of trematode infection. However, the time course of
encapsulation and viability of brown bodies remain unknown
and should be tested in the future. In prior work, several poly-
chaetes (Hydroides sp., Lumbrineris hebes, Scoloplos robusta,
and Arabella iricolor) have been shown to encapsulate the
metacercaria of Z. lasius, which appeared to be dead within
the capsule; alternatively, in another polychaete (Alitta virens),
the metacercaria remained viable in the parapodia for over
3 weeks (Shaw 1933). Moreover, Køie (2000) noted encapsu-
lation of a nematode parasite (Cucullanus heterochrous) during
experimental infections of Hediste diversicolor and other poly-
chaetes and showed that the nematode larvae were uninfective
to fish definitive hosts after 3 weeks. Encapsulation of nema-
todes has also been found in oligochaete hosts, which similarly
appeared to be non-infective (Poinar and Hess 1977), and
in some cases was eliminated by autonomy from the
oligochaete (Bilej 1994).

We also found the distribution of live cysts and brown
bodies to overlap within the anterior segments of the poly-
chaetes. The prominence of cysts in the anterior region is
probably the result of cercariae being drawn in by water cur-
rents created by the branchiae of M. viridis (Quintana et al.,
2011). Such findings are similar to Rangel and Santos (2009)
who showed the metacercariae ofGymnophallus choledochus
almost exclusively in the branchial segments of Diopatra
neapolitana and suggested that the cercariae may penetrate
the branchiae directly. Peoples (2013) indicated that trematode
cercariae may have evolved to penetrate the anterior region of
polychaetes because they are more likely ingested by preda-
tors, thus increasing the likelihood for trophic transmission. In
M. viridis, future studies should examine cercarial penetration
of polychaete hosts, focusing on the factors that may influence
their distributions within the polychaete.
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Studies in other annelids have found trematodes to influ-
ence fragmentation and survival of hosts. For example,
McCurdy (2001) found that when the spionid P. elegans was
infected with the trematode L. setiferoides, it fragmented ear-
lier than controls, suggesting that such early fragmentation
could be a host response to minimize costs on the poly-
chaetes—even so, negative impacts were still evident in that
parasitized individuals were smaller and had lower survivor-
ship (McCurdy 2001). Similarly, McCurdy and Moran (2004)
found that Alitta virens experimentally infected with metacer-
caria had higher mortalities and foraged less than uninfected
individuals.M. viridis is able to regenerate both posterior and
anterior body segments (Williams, pers. obs.), so future stud-
ies could examine whether trematodes similarly influence
fragmentation, regeneration, and survivorship in this species.
Other trematodes have been documented to impact polychaete
hosts, including G. choledochus Odhner, 1900 which can in-
vade the parapodia and cause disruption of the polychaete
setal sacs (Rangel and Santos 2009).

The ultimate fate of the trematodes we detected in
M. viridis is unclear and requires further investigation, along
with the immune response of the polychaetes as a result of

trematode infection. Future research could examine the pro-
gression of brown body formation and be coupled with exper-
imental studies testing cyst viability by feeding the encapsu-
lated metacercariae at various stages to definitive hosts.
Moreover, because M. viridis has been documented as a
non-native species in the Baltic Sea, North Sea, and Danish
Waters (Zettler 1997a, 1997b; Zander and Reimer 2002;
Sikorski and Bick 2004; Blank et al. 2008; Delefosse et al.
2012), researchers should also explore its potential role as a
second intermediate host in these regions. Zander and Reimer
(2002) examined an introduced population ofM. viridis in the
Baltic Sea and did not find any parasites, although trematodes
were confirmed in other polychaetes and molluscs in the area.

In conclusion, we report the first record of M. viridis
as a host of trematode metacercariae, finding three trem-
atode species in the polychaetes. Due to that fact that
relatively few polychaetes have been investigated as sec-
ond intermediate hosts, there are likely many additional
species that harbor metacercariae remaining to be discov-
ered. Our findings indicate that M. viridis could be an
important player in the life cycle of trophically transmit-
ted trematodes that infect a wide range of vertebrate
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Fig. 2 Phylogenetic trees of trematodes based on the COI region and 18S
rRNA. a Phylogenetic tree based on the COI region using the neighbor-
joining method in MEGA6. The optimal tree with the sum of branch
length is shown. The percentage of replicate trees in which the
associated taxa clustered together in the bootstrap test (2000 replicates)
is shown next to the branches. b Phylogenetic tree based on the COI
region using maximum likelihood method based on the Tamura 3-
parameter model using MEGA6. The tree with the highest log
likelihood is shown. The percentage of trees in which the associated
taxa clustered together is shown next to the branches. Initial trees for
the heuristic search were obtained by applying the neighbor-joining

method to a matrix of pairwise distances estimated using the maximum
composite likelihood approach. c Phylogenetic tree based on 18S rRNA
using the neighbor-joining method. The optimal tree with the sum of
branch length is shown. The percentage of replicate trees in which the
associated taxa clustered together in the bootstrap test (2000 replicates) is
shown next to the branches. d Phylogenetic tree based on 18S rRNA
using the maximum likelihood method based on the Tamura 3-
parameter model. The tree with the highest log likelihood is shown.
The percentage of trees in which the associated taxa clustered together
is shown next to the branches. Samples with the prefix Bp^ were from
polychaete; samples with the suffix BC^ were from molluscs
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hosts. Future research should focus on elucidating the
role of polychaetes in aiding or impeding the transmis-
sion of these ecologically important parasites.
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